
Simulation condition 

Japanese Female corpus: 18 h 

Acoustic features 

Mel-spectrogram: 80 dims, 12.5 ms 

Vocoder features (fo, vuv, mel-cepstrum): 

                        1 + 1 + 35 = 37 dims, 5 ms 

Results 

Tacotron 2 with full-context label input for pitch accent languages 

Input: Full-context label (130 dims) 

Output: Mel-spectrogram (80 dims) 

Real-time neural TTS with WaveGlow vocoder 

Real time factor (RTF) with a GPU: 0.16

Tacotron with forced attention (FAT) 

Encoded features are duplicated and redundant for decoder 

FAT cannot outperform Tacotron (Y. Yasuda et al., ICASSP 2019) 

Proposed acoustic model with Tacotron decoder and phoneme duration (PAM) 

HMM-based forced alignment and bidirectional LSTM-based duration model 

Acoustic model with bidirectional LSTM and decoder of Tacotron 2 

Redundancy in FAT can be reduced

Conventional text-to-speech (TTS) systems 

Duration and acoustic pipeline models with source-filter vocoders 

Widely used in practical systems but not high quality synthesis 

End-to-end neural TTS systems 

Sequence-to-sequence (seq2seq) model with neural vocoders 

Jointly optimizing duration and acoustic models and directly converting character 

or phoneme sequences to acoustic features (mel-spectrogram) 

State-of-the art end-to-end TTS models 

Tacotron 2 with autoregressive WaveNet vocoder: Human quality synthesis 

ClariNet (Deep voice 3 + parallel WaveNet): Entire end-to-end real-time neural TTS 

Transformer-based TTS: Faster training than Tacotron 2 

Problem of seq2seq models due to attention prediction error 

Speech samples sometimes cannot be successfully synthesized 

Crucial problem for practical TTS systems 

Real-time, high-fidelity, and stable neutral TTS systems with Tacotron structure  

Introducing conventional duration models to sophisticated seq2seq acoustic models 

HMM-based forced alignment can be relatively easily obtained 

Conventional duration model can estimate almost accurately predict phoneme 

durations

Tacotron-based acoustic model using phoneme alignment 

for practical neural text-to-speech systems
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This model is also unstable due to attention-based seq2seq structure
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RTF with an NVIDIA Tesla V100

MOS results with 15 listening subjects

Original Tacorton 2

PAM Predicted attention

Real-time, high-fidelity, and stable neural TTS can be realized by PAM


